当前位置: 首页 > news >正文

北京做网站需要多少钱b站视频推广app

北京做网站需要多少钱,b站视频推广app,外贸网站首页,加强健康养老网站建设1.基本概念及应用场景 回归分析是一种预测性的建模技术,数学建模中常用回归分析技术寻找存在相关关系的变量间的数学表达式,并进行统计推断。例如,司机的鲁莽驾驶与交通事故的数量之间的关系就可以用回归分析研究。回归分析根据变量的…

1.基本概念及应用场景        

        回归分析是一种预测性的建模技术,数学建模中常用回归分析技术寻找存在相关关系的变量间的数学表达式,并进行统计推断。例如,司机的鲁莽驾驶与交通事故的数量之间的关系就可以用回归分析研究。回归分析根据变量的数目分为一元回归和多元回归,根据自变量和因变量的表现形式分为线性和非线性

回归模型:描述因变量y如何依赖于自变量x和误差项e的方程。

回归方程:描述因变量y如何依赖于自变量x的方程。

2.回归分析的一般步骤

  • 确定回归方程中的解释变量和被解释变量
  • 确定回归模型,建立回归方程
  • 对回归方程进行各种检验
  • 用回归方程进行预测

3.一元线性回归分析

1.概念

例子:

  • 人均收入是否显著影响人均食品消费支出
  • 贷款余额是否影响到不良贷款
  • 航班正点率是否对顾客投诉次数有显著影响

回归模型: 

y=\beta _{0}+\beta _{1}x+\epsilon

\beta _{0}:截距

\beta _{1}:斜率

\epsilon:误差项,反映随机因数对y的影响,是不可避免的

回归方程:

y=\beta _{0}+\beta _{1}x

        若回归方程中的未知参数已知,则对于给定的x值,可计算出y的期望值。

        用样本统计量代替未知参数,就得到估计的回归方程,称回归直线。

2.最小二乘法求参数

        常用最小二乘法,即使残差(因变量的观察值与估计值的离差)平方和达到最小求参数:

Q=\sum (y-\widehat{y})^{2}=\sum (y-\widehat{\beta} _{0}-\widehat{\beta }_{1}x)^{2}

展开:

Q=\sum y^{2}+n\widehat{\beta} ^{2}_{0}+\widehat{\beta} ^{2}_{1}\sum x^{2}+2\widehat{\beta}_{0}\widehat{\beta}_{1}\sum x-2\widehat{\beta}_{0}\sum y-2\widehat{\beta}_{1}\sum xy

求偏导并整理:

\left\{\begin{matrix} \widehat{\beta }_{1}=\frac{n\sum xy-\sum x\sum y}{n\sum x^{2}-(\sum x)^2 }\\ \widehat{\beta }_{0}=\overline{y}-\widehat{\beta _{1}}\overline{x} \end{matrix}\right.

代入数据即可得到\widehat{\beta }_{0}\widehat{\beta }_{1}

3.点估计

        将x的值代入回归方程即可得对应\widehat{y}的点估计值。

4.区间估计

估计标准误差:

s_{e}=\sqrt{\frac{\sum (y-\widehat{y})^{2}}{n-k}}

        估计标准误差越小,则数据点围绕回归直线的分散程度越小,回归方程的代表性越大,可靠性越高。

置信区间:

\widehat{y_{0}}\pm t_{\frac{\alpha }{2}}s_{e}\sqrt{\frac{1}{n}+\frac{(x_{0}-\overline{x})^{2}}{\sum (x-\overline{x})^{2}}}

预测区间:

\widehat{y_{0}}\pm t_{\frac{\alpha }{2}}s_{e}\sqrt{1+\frac{1}{n}+\frac{(x_{0}-\overline{x})^{2}}{\sum (x-\overline{x})^{2}}}

\alpha:显著性水平

1-\alpha:置信水平

t_{\frac{\alpha }{2}}:即t_{\frac{\alpha }{2}}(n-k),n-k为残差自由度(样本容量-回归系数的数量),一元线性回归方程中k=2

模型建立和求解的Python代码:

import numpy as np
import statsmodels.api as sm
import scipy.stats as stats
import matplotlib.pyplot as plt
plt.rc('font', family='SimHei')  # 用来正常显示中文标签
plt.rc('axes', unicode_minus=False)  # 用来正常显示负号# 输入数据
x = np.array([143, 145, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 162, 164])
y = np.array([88, 85, 88, 91, 92, 93, 93, 95, 96, 98, 97, 96, 98, 99, 100, 102])# 添加截距项
X = sm.add_constant(x)# 求参数值
model = sm.OLS(y, X).fit()
beta = model.params
print("参数值:")
print("beta0 =", beta[0])
print("beta1 =", beta[1])# 点估计
x0 = float(input("x="))
y_pred = beta[0] + beta[1] * x0
print("点估计预测值:", y_pred)# 计算标准误差
se = np.sqrt(model.mse_resid)# 自由度
n = len(x)
df = n - model.df_model - 1# 置信水平和 t 分位数
alpha = 0.05
t = np.abs(stats.t.ppf(alpha/2, df))# 计算置信区间和预测区间
x_mean = np.mean(x)
x_var = np.sum((x - x_mean)**2)
conf_interval = t * se * np.sqrt(1/n + (x - x_mean)**2 / x_var)
pred_interval = t * se * np.sqrt(1 + 1/n + (x - x_mean)**2 / x_var)# 绘制原始数据和回归直线
plt.scatter(x, y, color='blue', marker='*', label='原始数据')
plt.plot(x, model.fittedvalues, color='red', label='回归直线')
plt.xlabel('x')
plt.ylabel('y')# 绘制置信区间和预测区间
plt.fill_between(x, model.fittedvalues - conf_interval, model.fittedvalues + conf_interval, color='gray', alpha=0.3, label='置信区间')
plt.fill_between(x, model.fittedvalues - pred_interval, model.fittedvalues + pred_interval, color='yellow', alpha=0.3, label='预测区间')plt.legend()
plt.show()

5.模型检验

1.回归直线的拟合优度

        回归直线与各观测点的接近程度称为回归直线对数据的拟合优度。

        评价拟合优度的指标:

  • 总平方和(TSS):反映因变量的n个观测值与其均值的总离差

TSS=\sum y_{i}^{2}=\sum (y_{i}-\overline{y}_{i})^{2}

  • 回归平方和(ESS):反映了y的总变差中,由于x与y之间的线性关系引起的y的变化部分

ESS=\sum \widehat{y_{i}}^{2}=\sum (\widehat{y_{i}}-\overline{y}_{i})^{2}

  • 残差平方和(RSS):反映了其他因素对y变差的作用,是不能由回归直线来解释的y的变差部分

RSS=\sum e_{i}^{2}=\sum (y_{i}-\widehat{y_{i}})^{2}99

http://www.mmbaike.com/news/294.html

相关文章:

  • 安庆 做网站小程序开发一个多少钱啊
  • 做网站怎么买服务器吗专业培训seo的机构
  • 微营销推广seo论坛站长交流
  • 成都酒店网站建设百度自动点击器
  • 薄荷网wordpress全网搜索引擎优化
  • xp花生壳做自己的网站自己建网站怎么推广
  • 电子商务网站建设背景优化公司结构
  • 网址升级中seo排名培训
  • 软件系统开发平台漳州seo网站快速排名
  • 1024d wordpress安卓优化神器
  • 传统企业营销型网站建设软文代写兼职
  • 长沙多地发布最新通告seo宣传
  • 南宁网站制作计划市场营销咨询
  • 衡水网站建seo推广有哪些
  • 做简单网站需要学什么软件有哪些内容百度推广公司电话
  • 合肥市住房城乡建设委官方网站描述优化方法
  • 门头沟做网站南宁今日头条最新消息
  • 郑州网站模板哪里有南宁网站推广公司
  • 怎么提高网站访问量廊坊seo
  • 个人网站能干嘛友妙招链接
  • 中国材料信息网seo视频教程
  • 乐清小程序企业seo职位
  • 云南微网站建设的公司有哪些吸引人的微信软文范例
  • 盐城专业做网站的公司优秀软文范例
  • 电商网站建设目的女装标题优化关键词
  • dedecms蓝色企业网站模板哪里做网络推广好
  • 域名和网站的关系如何提高网站排名的方法
  • 官方网站内容可做证据吗做网站公司
  • 陕西营销型手机网站建设东莞整站优化
  • 我的世界大橙子做皮肤的网站网站建设网络推广seo