当前位置: 首页 > news >正文

大连百度网站快速优化app开发成本预算表

大连百度网站快速优化,app开发成本预算表,四大商业网站,有模板如何做网站提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、文件读取1.以pd.read_csv()为例:2.数据查看 二、数据离散化、排序1.pd.cut()离散化,以按范围加标签为例2. pd.qcut()实现离散化3.排序4.…

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 一、文件读取
    • 1.以pd.read_csv()为例:
    • 2.数据查看
  • 二、数据离散化、排序
    • 1.pd.cut()离散化,以按范围加标签为例
    • 2. pd.qcut()实现离散化
    • 3.排序
    • 4.Series.map()&Series.apply()
  • 三、数据处理
    • 1.发现缺失值
    • 2.剔除缺失值
    • 3.填充缺失值
      • 1)固定值填充
      • 2)前向填充&后向填充
    • 4.df.replace()
    • 5.重复值处理
    • 6.四分位法识别异常值
  • 四、分组、索引及聚合
    • 1.分组函数
    • 2.索引设置与重置
      • 1)重置索引
      • 2)设置索引
      • 3)索引排序
    • 3.分组后常见操作
      • 1)分组后聚合
      • 2)分组后过滤filter
      • 3)分组后过滤transform
      • 4)分组后过滤apply

一、文件读取

方法:

  • pd.read_csv()
  • pd.read_excel()
  • pd.read_json()
  • pd.read_sql()
  • pd.read_xml()

1.以pd.read_csv()为例:

在这里插入图片描述

2.数据查看

在这里插入图片描述
在这里插入图片描述
df.describe()方法只针对数值列的描述性统计
在这里插入图片描述
统计出现次数
在这里插入图片描述

二、数据离散化、排序

1.pd.cut()离散化,以按范围加标签为例

在这里插入图片描述

2. pd.qcut()实现离散化

cut是根据每个值进行离散化,qcut是根据每个值出现的次数进行离散,也就是基于分位数的离散化功能
在这里插入图片描述

3.排序

  • df.sort_index():按照默认索引按正序排序
    在这里插入图片描述
  • data1.sort_values()按照实际值排序
    在这里插入图片描述
  • Series.nlargest()获取前N个最大值,与之相对于的为Series.nsmallest()
    在这里插入图片描述

4.Series.map()&Series.apply()

  • Series.map()
    map()是Series中特有方法,通过它实现对Series每个元素互换
    在这里插入图片描述

  • Series.apply()和df.apply()
    apply()在对Series操作时,会作用到每个值上,在对DataFrame操作时,会作用到所有行或列(通过axis控制)
    在这里插入图片描述

  • df.applymap()
    applymap方法针对与DataFrame,其效果类似于apply对series的效果

  • pandas中map()、apply()、applymap()的区别:
    1、map()方法适用于Series对象,作用于Series里的一个个元素,可以通过字典或函数类对象来构建映射关系对Series对象进行转换;
    2、apply()方法适用于Series对象、DataFrame对象、Groupby对象Series.apply()作用于Series里的一个个元素df.apply()处理的是行或列数据(本质上处理的是单个Series),用函数类对象来构建映射关系对Series对象进行转换;
    3、applymap()方法用来处理DataFrame对象的单个元素值,作用于df中的一个个元素,也是使用函数类对象映射转换;

三、数据处理

1.发现缺失值

在这里插入图片描述

2.剔除缺失值

df.dropna():

  • how:how为all时,只有当该列(或行)全部缺失时,才会将该列删除;为any时,当该列(或行)有缺失时,会将该列删除
  • thresh:设置非缺失值个数,axis=1当该列非缺失值个数大于等于设置的值时,该列保留,否则删除

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.填充缺失值

df.fillna()
填充思路

  • 根据业务知识填充
  • 连续性变量缺失值的填充(均值、众数)
  • 分类型变量缺失值的填充(众数)
  • 预测值填充

1)固定值填充

在这里插入图片描述

2)前向填充&后向填充

  • 前向填充:取前一个值填充
  • 后向填充:取后一个值填充
    在这里插入图片描述

4.df.replace()

有些异常值“-”,不是缺失值,但程序无法处理,需要换成程序可失败的缺失值
在这里插入图片描述

5.重复值处理

df.drop_duplicates()

  • 不传参时,删除一模一样的数据,并保留出现的第一条
  • keep:first、last、false数据保留原则
  • subset用作字段判断依据
    在这里插入图片描述

6.四分位法识别异常值

在这里插入图片描述

四、分组、索引及聚合

1.分组函数

groupby函数之间按组进行迭代,每一组都是Series或DataFrame
在这里插入图片描述

2.索引设置与重置

在这里插入图片描述

1)重置索引

在这里插入图片描述

2)设置索引

在这里插入图片描述

3)索引排序

在这里插入图片描述

3.分组后常见操作

1)分组后聚合

groupby().aggregate()方法,填入对应字典映射,即可查看数据中位数、均值,合计

在这里插入图片描述

2)分组后过滤filter

在这里插入图片描述

3)分组后过滤transform

groupby().transform()方法,在数据转换之后的形状和原来是一样的,但并不是单纯的将一列数据转换,而是对分组之后的小组数据内部按照相同的逻辑和组内指标进行转换,常见的例子是实现组内数据标准化
在这里插入图片描述

4)分组后过滤apply

输入一个分组的DataFrame进行apply(),可以返回一个DataFrame或Series或一个标量。
group和apply的组合操作可以适应apply()返回的结果类型
在这里插入图片描述

http://www.mmbaike.com/news/49062.html

相关文章:

  • 网站设计文献 今日头条
  • 河北网站制作多少钱软文网站有哪些
  • 赣州市做网站设计自助建站系统代理
  • 做个网站得投入多少台州做优化
  • 如何做设计网站页面关键词林俊杰的寓意
  • wordpress 主题配置廊坊网站建设优化
  • 电商网站系统建设考试深圳网络营销运营
  • 郑州网站建设哪家最好南宁优化推广服务
  • 苏州外贸网站推广怎么创建网页链接
  • wordpress 清空回收站石家庄seo管理
  • 百度做的网站 后台管理怎么进入营销网页
  • 手机设计软件官方下载seo诊断专家
  • 旅游网站开发背景论文漳州seo建站
  • 网站建设设计开发论文3500字泰安seo推广
  • nas 建网站游戏推广话术技巧
  • 寻找在山西运城专业做网站推广的今天
  • 教你如何建设网站阿里去河北seo技术
  • 哪个网站做的效果图好爱站网
  • 网购网站开发流程网站收录怎么弄
  • 电子商务网站规划与建设步骤站长之家域名查询
  • 秦皇岛网站排名公司seo技术软件
  • 杭州企业做网站网络营销工程师前景
  • 在荔浦找事情做投简历那个网站如何免费发布广告
  • 课程网站建设简介百度网盘在线观看资源
  • 网站开发服务费合同范本廊坊seo推广公司
  • 网站建设尺寸长春百度网站快速排名
  • 阿里云免费网站磁力神器
  • 西宁企业网站建设开发冯耀宗seo博客
  • 后台风格网站苏州百度推广代理商
  • 做品牌网站的代发推广百度首页包收录