当前位置: 首页 > news >正文

自建站做seo在线分析网站

自建站做seo,在线分析网站,网页制作素材免费网站,做网站每天任务及实训过程粒子群优化算法求解TSP旅行商问题C(2020.11.12)_jing_zhong的博客-CSDN博客 混合粒子群算法(PSO):C实现TSP问题 - 知乎 (zhihu.com) 一、原理 又是一个猜答案的算法,和遗传算法比较像,也是设…

粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_jing_zhong的博客-CSDN博客

混合粒子群算法(PSO):C++实现TSP问题 - 知乎 (zhihu.com)

一、原理

又是一个猜答案的算法,和遗传算法比较像,也是设置迭代次数,控制什么时候结束,然后设置粒子种群,每个种群代表一个访问城市的路径,代价函数就是访问一遍的路径和。

初始的时候,随机初始化30个粒子群(可自己设置),然后从这30个例子群里,找一个种群代价最优的结果,存入gbest路径。接着就是每次迭代更新粒子种群,更新思路是每个粒子包含一条访问城市的路径,对每个粒子中的点产生一个速度(这个速度有一共对应公式,v = w * v_cur + c1 * r1 * (x_best - x_cur) +c2 * r2(x_gbest - x_cur)),通过这个速度更新访问城市的路径(x = x + v),当然这个速度作用于城市序号上,会产生小数和重叠,以及不能让这个速度太大,需要限定在一定范围内,如果出现城市序号重复,则需要将重复的序号换成没有出现的序号。

最后每迭代一次,计算一次全局最优粒子,直到迭代结束。

如果访问29个城市,暴力枚举需要计算28!= 304 888 344 611 713 860 501 504 000 000 。可见随着城市数量的增加,计算量是指数级上升,如果使用粒子群算法,计算量30*500=15000,计算量是线性的,确实很有优势。

二、代码 

   1    1150.0  1760.02     630.0  1660.03      40.0  2090.04     750.0  1100.05     750.0  2030.06    1030.0  2070.07    1650.0   650.08    1490.0  1630.09     790.0  2260.010     710.0  1310.011     840.0   550.012    1170.0  2300.013     970.0  1340.014     510.0   700.015     750.0   900.016    1280.0  1200.017     230.0   590.018     460.0   860.019    1040.0   950.020     590.0  1390.021     830.0  1770.022     490.0   500.023    1840.0  1240.024    1260.0  1500.025    1280.0   790.026     490.0  2130.027    1460.0  1420.028    1260.0  1910.029     360.0  1980.0
#include <iostream>
#include <string>
#include <fstream>
#include <time.h>
#include <random>
using namespace std;
const int citycount = 29;
double vmax = 1, vmin = -1;
std::default_random_engine random(time(NULL));//通过time这个随机数种子,每次产生不同的随机数
static std::uniform_real_distribution<double> distribution(0.0, std::nextafter(1.0, DBL_MAX));// C++11提供的实数均匀分布模板类  0~1
static std::uniform_real_distribution<double> distribution1(vmin, std::nextafter(vmax, DBL_MAX));//-1~1class City
{
public:string name;//城市名称double x, y;//城市点的二维坐标void shuchu(){std::cout << name + ":" << "(" << x << "," << y << ")" << endl;}
};class Graph
{
public:City city[citycount];//城市数组double distance[citycount][citycount];//城市间的距离矩阵void Readcoordinatetxt(string txtfilename)//读取城市坐标文件的函数{ifstream myfile(txtfilename, ios::in);double x = 0, y = 0;int z = 0;if (!myfile.fail()){int i = 0;while (!myfile.eof() && (myfile >> z >> x >> y)){city[i].name = to_string(z);//城市名称转化为字符串city[i].x = x; city[i].y = y;i++;}}elsecout << "文件不存在";myfile.close();//计算城市距离矩阵for (int i = 0; i < citycount; i++)//29for (int j = 0; j < citycount; j++){distance[i][j] = sqrt((pow((city[i].x - city[j].x), 2) + pow((city[i].y - city[j].y), 2)) / 10.0);//计算城市ij之间的伪欧式距离if (round(distance[i][j] < distance[i][j])) distance[i][j] = round(distance[i][j]) + 1;else distance[i][j] = round(distance[i][j]);//round向上取整}}void shuchu(){cout << "城市名称 " << "坐标x" << " " << "坐标y" << endl;for (int i = 0; i < citycount; i++)city[i].shuchu();cout << "距离矩阵: " << endl;for (int i = 0; i < citycount; i++){for (int j = 0; j < citycount; j++){if (j == citycount - 1)std::cout << distance[i][j] << endl;elsestd::cout << distance[i][j] << "  ";}}}
};Graph Map_City;//定义全局对象图,放在Graph类后
int * Random_N(int n)
{int *geti;geti = new int[n];int j = 0;while (j < n){while (true){int flag = -1;int temp = rand() % n + 1;//随机取1~29if (j > 0){int k = 0;for (; k < j; k++){if (temp == *(geti + k))break;}if (k == j){*(geti + j) = temp;flag = 1;}}else{*(geti + j) = temp;flag = 1;}if (flag == 1)break;}j++;}return geti;
}double Evaluate(int *x)//计算粒子适应值的函数
{double fitnessvalue = 0;for (int i = 0; i < citycount - 1; i++)fitnessvalue += Map_City.distance[x[i] - 1][x[i + 1] - 1];fitnessvalue += Map_City.distance[x[citycount - 1] - 1][x[0] - 1];//城市尾与第一个城市的距离,x是一组路线的序号return fitnessvalue;
}class Particle
{
public:int *x;//粒子的位置  一条路径int *v;//粒子的速度double fitness;void Init(){x = new int[citycount];v = new int[citycount];int *M = Random_N(citycount);//随机生成一组路径for (int i = 0; i < citycount; i++)x[i] = *(M + i);fitness = Evaluate(x);//计算这组路径的代价for (int i = 0; i < citycount; i++){v[i] = (int)distribution1(random);//产生-1~1之间的随机数}}void shuchu(){for (int i = 0; i < citycount; i++){if (i == citycount - 1)std::cout << x[i] << ") = " << fitness << endl;else if (i == 0)std::cout << "f(" << x[i] << ",";elsestd::cout << x[i] << ",";}}
};void Adjuxt_validParticle(Particle p)//调整粒子有效性的函数,使得粒子的位置符合TSP问题解的一个排列
{int route[citycount];//1-citycountbool flag[citycount];//对应route数组中是否在粒子的位置中存在的数组,参考数组为routeint biaoji[citycount];//对粒子每个元素进行标记的数组,参考数组为粒子位置xfor (int j = 0; j < citycount; j++){route[j] = j + 1;flag[j] = false;biaoji[j] = 0;}//首先判断粒子p的位置中是否有某个城市且唯一,若有且唯一,则对应flag的值为true,for (int j = 0; j < citycount; j++){int num = 0;for (int k = 0; k < citycount; k++){if (p.x[k] == route[j]){biaoji[k] = 1;//说明粒子中的k号元素对应的城市在route中,并且是第一次出现才进行标记num++; break;}}if (num == 0) flag[j] = false;//粒子路线中没有route[j]这个城市else if (num == 1) flag[j] = true;//粒子路线中有route[j]这个城市}for (int k = 0; k < citycount; k++){if (flag[k] == false)//粒子路线中没有route[k]这个城市,需要将这个城市加入到粒子路线中{int i = 0;for (; i < citycount; i++){if (biaoji[i] != 1)break;}p.x[i] = route[k];//对于标记为0的进行替换biaoji[i] = 1;}}
}class PSO
{
public:Particle *oldparticle; //当前粒子种群信息Particle *pbest; //每个个体最优Particle gbest;//群体最优double c1, c2, w;int Itetime;int popsize;void Init(int Pop_Size, int itetime, double C1, double C2, double W){Itetime = itetime;//迭代500次c1 = C1;//2c2 = C2;//2w = W;//0.8popsize = Pop_Size;//30oldparticle = new Particle[popsize];//30个粒子,每个粒子包含一条随机路径pbest = new Particle[popsize];//30个粒子for (int i = 0; i < popsize; i++)//初始化30次{oldparticle[i].Init();//初始化30个粒子群pbest[i].Init();//初始化30个粒子群for (int j = 0; j < citycount; j++){pbest[i].x[j] = oldparticle[i].x[j];pbest[i].fitness = oldparticle[i].fitness;}}gbest.Init(); //初始化一个粒子群gbest.fitness = INFINITY;//初始设为极大值for (int i = 0; i < popsize; i++)//遍历30个粒子群{if (pbest[i].fitness < gbest.fitness)//如果当前粒子群代价比种群最小的代价还小,则更新其{gbest.fitness = pbest[i].fitness;for (int j = 0; j < citycount; j++)//29个城市点gbest.x[j] = pbest[i].x[j];//最优路径的路径}}}void Shuchu(){for (int i = 0; i < popsize; i++){std::cout << "粒子" << i + 1 << "->";oldparticle[i].shuchu();}std::cout << "当前最优粒子:" << std::endl;gbest.shuchu();}void PSO_TSP(int Pop_size, int itetime, double C1, double C2, double W, double Vlimitabs, string filename){Map_City.Readcoordinatetxt(filename);//计算城市间距离矩阵Map_City.shuchu();//输出初始城市位置和距离矩阵vmax = Vlimitabs; //3vmin = -Vlimitabs;//-3Init(Pop_size, itetime, C1, C2, W);//在随机初始的粒子群中,找到一个最优的粒子std::cout << "初始化后的种群如下:" << endl;Shuchu();//输出初始种群及最优路径//向文件中写入城市坐标,距离矩阵ofstream outfile;outfile.open("result.txt", ios::trunc);outfile << "城市名称 " << "坐标x" << " " << "坐标y" << endl;for (int i = 0; i < citycount; i++)outfile << Map_City.city[i].name << " " << Map_City.city[i].x << " " << Map_City.city[i].y << endl;outfile << "距离矩阵: " << endl;for (int i = 0; i < citycount; i++){for (int j = 0; j < citycount; j++){if (j == citycount - 1)outfile << Map_City.distance[i][j] << endl;elseoutfile << Map_City.distance[i][j] << "  ";}}outfile << "初始化后的种群如下:" << endl;for (int i = 0; i < popsize; i++){outfile << "粒子" << i + 1 << "->";for (int j = 0; j < citycount; j++)//29{if (j == citycount - 1)outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;else if (j == 0)outfile << "f(" << oldparticle[i].x[j] << ",";elseoutfile << oldparticle[i].x[j] << ",";}}for (int ite = 0; ite < Itetime; ite++)//500次{for (int i = 0; i < popsize; i++)//30{//更新粒子速度和位置for (int j = 0; j < citycount; j++)//29{//v= w*v_oldP + c1*r1*(x_bestP - x_oldP) +c2*r2(x_gbest - x_oldP)oldparticle[i].v[j] = (int)(w*oldparticle[i].v[j] + c1 * distribution(random)*(pbest[i].x[j] - oldparticle[i].x[j]) + c2 * distribution(random)*(gbest.x[j] - oldparticle[i].x[j]));if (oldparticle[i].v[j] > vmax)//粒子速度越界调整oldparticle[i].v[j] = (int)vmax;else if (oldparticle[i].v[j] < vmin)oldparticle[i].v[j] = (int)vmin;oldparticle[i].x[j] += oldparticle[i].v[j];//x=x+vif (oldparticle[i].x[j] > citycount)oldparticle[i].x[j] = citycount;//粒子位置越界调整  让路径的每个点像速度一样变化取整else if (oldparticle[i].x[j] < 1) oldparticle[i].x[j] = 1;}//粒子位置有效性调整,必须满足解空间的条件Adjuxt_validParticle(oldparticle[i]);//对重复的城市去重oldparticle[i].fitness = Evaluate(oldparticle[i].x);//计算当前粒子的代价pbest[i].fitness = Evaluate(pbest[i].x);if (oldparticle[i].fitness < pbest[i].fitness)//如果当前粒子的代价比之前历史中粒子的代价都小,则替换为历史最小代价{for (int j = 0; j < citycount; j++)pbest[i].x[j] = oldparticle[i].x[j];}//更新单个粒子的历史极值for (int j = 0; j < citycount; j++)gbest.x[j] = pbest[i].x[j];//更新全局极值for (int k = 0; k < popsize && k != i; k++)//30  从单个最优中找一个全局最优保存起来{if (Evaluate(pbest[k].x) < Evaluate(gbest.x)){for (int j = 0; j < citycount; j++)gbest.x[j] = pbest[k].x[j];gbest.fitness = Evaluate(gbest.x);}}}//迭代30次outfile << "第" << ite + 1 << "次迭代后的种群如下:" << endl;for (int i = 0; i < popsize; i++){outfile << "粒子" << i + 1 << "->";for (int j = 0; j < citycount; j++){if (j == citycount - 1)outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;else if (j == 0)outfile << "f(" << oldparticle[i].x[j] << ",";elseoutfile << oldparticle[i].x[j] << ",";}}std::cout << "第" << ite + 1 << "次迭代后的最好粒子:";outfile << "第" << ite + 1 << "次迭代后的最好粒子:" << endl;for (int j = 0; j < citycount; j++){if (j == citycount - 1)outfile << gbest.x[j] << ") = " << gbest.fitness << endl;else if (j == 0)outfile << "f(" << gbest.x[j] << ",";elseoutfile << gbest.x[j] << ",";}gbest.shuchu();//每次迭代的全局最优}outfile.close();}
};int main()
{PSO pso;std::cout << "粒子群优化算法求解TSP旅行商问题" << endl;pso.PSO_TSP(30, 500, 2, 2, 0.8, 3.0, "data.txt");system("pause");return 0;
}

http://www.mmbaike.com/news/49075.html

相关文章:

  • 做外贸都用什么网站广告推广投放平台
  • 百度云网站备案流程十大品牌营销策划公司
  • 彩投网站建设盐酸达泊西汀片是治疗什么的药物
  • 企业邮箱怎么改密码宁波seo网络推广产品服务
  • 皖icp合肥网站建设互联网推广广告
  • 一个可以用来做测试的网站网络营销策略包括哪些
  • 网站搭建h5是什么网站搭建一般要多少钱
  • 广州网站快速排名成人短期技能培训学校
  • 遵义市政府网站建设概况如何联系百度推广
  • 开发电子商务网站的主流语言重庆seo小潘大神
  • 室内设计专用软件滨州seo招聘
  • 大连百度网站快速优化app开发成本预算表
  • 网站设计文献 今日头条
  • 河北网站制作多少钱软文网站有哪些
  • 赣州市做网站设计自助建站系统代理
  • 做个网站得投入多少台州做优化
  • 如何做设计网站页面关键词林俊杰的寓意
  • wordpress 主题配置廊坊网站建设优化
  • 电商网站系统建设考试深圳网络营销运营
  • 郑州网站建设哪家最好南宁优化推广服务
  • 苏州外贸网站推广怎么创建网页链接
  • wordpress 清空回收站石家庄seo管理
  • 百度做的网站 后台管理怎么进入营销网页
  • 手机设计软件官方下载seo诊断专家
  • 旅游网站开发背景论文漳州seo建站
  • 网站建设设计开发论文3500字泰安seo推广
  • nas 建网站游戏推广话术技巧
  • 寻找在山西运城专业做网站推广的今天
  • 教你如何建设网站阿里去河北seo技术
  • 哪个网站做的效果图好爱站网