当前位置: 首页 > news >正文

郑州二七区seo推广排名平台有哪些

郑州二七区,seo推广排名平台有哪些,网站建设项目背景,做网站交互LSTM回归网络(1→1) 长短期记忆网络 - 通常只称为“LSTM” - 是一种特殊的RNN,能够学习长期的规律。 它们是由Hochreiter&Schmidhuber(1997)首先提出的,并且在后来的工作中被许多人精炼和推广。…

LSTM回归网络(1→1)

长短期记忆网络 - 通常只称为“LSTM” - 是一种特殊的RNN,能够学习长期的规律。 它们是由Hochreiter&Schmidhuber(1997)首先提出的,并且在后来的工作中被许多人精炼和推广。他们在各种各样的问题上应用得非常好,现在被广泛的使用。

LSTM简介

有一串时间序列数据[112,118,132,129,121,135],训练的本质是用后一个步长的数据作为Y去对应当前的X。
用一个步长预测一个,监督学习数据类型1->1
X Y
112 118
118 132
132 129
129 121
121 135

问题描述

所给的数据文件是1949-1960每月的航班乘客数量
在这里插入图片描述

源代码

# LSTM for international airline passengers problem with regression framing
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
"""
用一个步长预测一个,监督学习数据类型1->1
X		    Y
112		118
118		132
132		129
129		121
121		135
"""
# 将数据截取成1->1的监督学习格式
def create_dataset(dataset, look_back=1):dataX, dataY = [], []for i in range(len(dataset)-look_back-1):a = dataset[i:(i+look_back), 0]dataX.append(a)dataY.append(dataset[i + look_back, 0])return numpy.array(dataX), numpy.array(dataY)
# 定义随机种子,以便重现结果
numpy.random.seed(7)
# 加载数据
dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python')
dataset = dataframe.values
dataset = dataset.astype('float32')
# 缩放数据
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# 分割2/3数据作为测试
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 预测数据步长为1,一个预测一个,1->1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# 重构输入数据格式 [samples, time steps, features] = [93,1,1]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# 构建 LSTM 网络
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 对训练数据的Y进行预测
trainPredict = model.predict(trainX)
# 对测试数据的Y进行预测
testPredict = model.predict(testX)
# 对数据进行逆缩放
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# 计算RMSE误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))# 构造一个和dataset格式相同的数组,共145行,dataset为总数据集,把预测的93行训练数据存进去
trainPredictPlot = numpy.empty_like(dataset)
# 用nan填充数组
trainPredictPlot[:, :] = numpy.nan
# 将训练集预测的Y添加进数组,从第3位到第93+3位,共93行
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict# 构造一个和dataset格式相同的数组,共145行,把预测的后44行测试数据数据放进去
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
# 将测试集预测的Y添加进数组,从第94+4位到最后,共44行
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict# 画图
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

代码注释

1、scaler = MinMaxScaler(feature_range=(0, 1))。这段代码的意思是使用MinMaxScaler对数据进行归一化处理,将特征值缩放到0到1的范围内。

2、dataset = scaler.fit_transform(dataset)。这是一个常见的数据预处理步骤,将数据集进行归一化(或标准化)。在这个过程中,scaler是一个用于缩放数据的对象,可以使用fit_transform方法来对数据集进行归一化处理。这个方法会计算数据集的均值和标准差,并将数据进行转换,使得数据的分布符合均值为0,标准差为1的正态分布。通过归一化可以使得数据的不同特征在相同的尺度上进行比较和分析。转换后的部分数据如下:
在这里插入图片描述

3、model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss=‘mean_squared_error’, optimizer=‘adam’)
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)。
这段代码是使用Keras库构建了一个简单的循环神经网络(LSTM)模型。模型使用一个LSTM层,输入形状为(1, look_back),其中look_back是用于预测的时间步数。然后,通过添加一个全连接层(Dense)来输出预测结果。模型使用均方误差作为损失函数,优化器选择Adam。训练时使用了trainX作为输入数据,trainY作为目标数据,通过100个epochs进行训练,每个batch的大小为1,并且设置verbose=2打印训练过程的日志信息。

结果

在这里插入图片描述

参考博文

LSTM模型介绍

http://www.mmbaike.com/news/55684.html

相关文章:

  • 电子印章在线制作网站外链seo招聘
  • shopify建站公司个人网页免费域名注册入口
  • 黑龙江做网站哪家好什么是网络营销
  • 快速建设网站免费视频教程外贸网站seo
  • 家装设计师接单平台赣州seo排名
  • 锡林郭勒盟建设工程造价信息管理网站企业网站设计规范
  • 一级网站建设朋友圈推广广告
  • 不会代码怎么做外贸网站什么平台可以推销自己的产品
  • 使用wordpress西安百度推广优化公司
  • 招商网站建设公司网络营销客服主要做什么
  • 架设网站服务器百度seo营销推广多少钱
  • 淮南做网站的公司颜色广告
  • 网站建设 响应式百度搜索开放平台
  • 自己建网站做淘宝客靠谱吗雏鸟app网站推广
  • 免费用手机做网站谷歌关键词搜索
  • 做微信头图的网站百度搜索引擎平台
  • 电商网站欣赏搜索引擎查重
  • 重庆祥云平台做网站备案域名购买
  • 做哪些网站可以赚钱的谷歌推广方案
  • 网站云主机手机软文广告300字
  • 怎么做简单的企业网站网络营销概念是什么
  • 官方网站下载qq音速百度注册公司网站
  • 做网站哪个公司最网络营销方式包括哪些
  • 建网站需花哪几种钱山东seo优化
  • 企业网站案例展示百度一下百度搜索
  • 软件开发文档用什么写网站优化和网站推广
  • 企业网络推广网站建设产品推广方案范文500字
  • 网站建设大概好多钱网络广告营销策划方案
  • 做网站还是做游戏免费域名空间申请网址
  • 商务网站建设规划流程网站seo优化总结