当前位置: 首页 > news >正文

南昌企业建站模板品牌推广营销

南昌企业建站模板,品牌推广营销,20平米的办公室怎样装修,学校网站建设开题报告一、方式一 网络模型、损失函数、数据(包括输入、标注) 找到以上三种变量,调用它们的.cuda(),再返回即可 if torch.cuda.is_available():mynn mynn.cuda() if torch.cuda.is_available():loss_function loss_function.cuda(…

 一、方式一

网络模型、损失函数、数据(包括输入、标注)

找到以上三种变量,调用它们的.cuda(),再返回即可

if torch.cuda.is_available():mynn = mynn.cuda()
if torch.cuda.is_available():loss_function = loss_function.cuda()
for data in train_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()
for data in test_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()

完整代码:

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="../datasets",train=True,transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10(root="../datasets",train=False,transform=torchvision.transforms.ToTensor(),download=False)train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型
class MyNN(nn.Module):def __init__(self):super(MyNN, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return x
mynn = MyNN()
if torch.cuda.is_available():mynn = mynn.cuda()# 损失函数
loss_function = nn.CrossEntropyLoss()
if torch.cuda.is_available():loss_function = loss_function.cuda()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(mynn.parameters(), lr=learning_rate)# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 # 训练的轮数# 添加tensorboard
writer = SummaryWriter("../logs_train")start_time = time.time()
for i in range(epoch):print("----------第{}轮训练开始----------".format(i+1))# 训练步骤开始mynn.train()for data in train_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()outputs = mynn(imgs)loss = loss_function(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 == 0:end_time = time.time()print("所用时间:{}".format(end_time - start_time))print("训练次数:{},loss:{}".format(total_train_step, loss.item()))writer.add_scalar("train_loss",loss.item(),total_train_step)# 测试步骤开始mynn.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()outputs = mynn(imgs)loss = loss_function(outputs, targets)total_test_loss += lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy += accuracyprint("整体测试集上的loss:{}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss",total_test_loss,total_test_step)writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)total_test_step += 1torch.save(mynn,"mynn_{}.pth".format(i))# torch.save(mynn.state_dict(),"mynn_{}.pth".format(i))print("模型已保存")writer.close()

 比较CPU和GPU的训练时间:

 查看GPU信息:

在 终端里输入nvidia-smi

 使用Google Colab:Google 为我们提供了一个免费的GPU

修改 ——> 笔记本设置 ——> 硬件加速器选择GPU(每周免费使用30h)

 

 

 二、方式二(更常用)

定义训练设备

device = torch.device("cpu")
# 对于单显卡来说,以下两种方式没有区别
device = torch.device("cuda")
device = torch.device("cuda:0")
# 一种语法的简写,程序在 CPU 或 GPU/cuda 环境下都能运行
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

网络模型、损失函数、数据(包括输入、标注)

找到以上三种变量,.to(device),再返回即可

mynn = MyNN()
mynn = mynn.to(device)
# 这里可以不用再赋值给mynn,直接mynn.to(device) 也可以
loss_function = nn.CrossEntropyLoss()
loss_function = loss_function.to(device)
# 这里可以不用再赋值给loss_function ,直接loss_function .to(device) 也可以
for data in train_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)# 这里必须赋值
for data in test_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = imgs.to(device)# 这里必须赋值

完整代码:

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 定义训练的设备
# device = torch.device("cpu")
# device = torch.device("cuda")
# device = torch.device("cuda:0")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="../datasets",train=True,transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10(root="../datasets",train=False,transform=torchvision.transforms.ToTensor(),download=False)train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型
class MyNN(nn.Module):def __init__(self):super(MyNN, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return x
mynn = MyNN()
mynn.to(device)# 损失函数
loss_function = nn.CrossEntropyLoss()
loss_function.to(device)
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(mynn.parameters(), lr=learning_rate)# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 # 训练的轮数# 添加tensorboard
writer = SummaryWriter("../logs_train")start_time = time.time()
for i in range(epoch):print("----------第{}轮训练开始----------".format(i+1))# 训练步骤开始mynn.train()for data in train_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = mynn(imgs)loss = loss_function(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 == 0:end_time = time.time()print("所用时间:{}".format(end_time - start_time))print("训练次数:{},loss:{}".format(total_train_step, loss.item()))writer.add_scalar("train_loss",loss.item(),total_train_step)# 测试步骤开始mynn.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = mynn(imgs)loss = loss_function(outputs, targets)total_test_loss += lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy += accuracyprint("整体测试集上的loss:{}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss",total_test_loss,total_test_step)writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)total_test_step += 1torch.save(mynn,"mynn_{}.pth".format(i))# torch.save(mynn.state_dict(),"mynn_{}.pth".format(i))print("模型已保存")writer.close()
http://www.mmbaike.com/news/78523.html

相关文章:

  • 上海建设网站推广普通话ppt课件
  • 新云网站模版网站建设的流程是什么
  • 建设银行纪检监察网站网络销售平台
  • 老河口网站seo竞价推广
  • 男女直接做视频教学视频网站百度上广告怎么搞上去的
  • 当前政府网站建设的模式seo推广一年要多少钱
  • 本地做网站顺序网页制作与设计教程
  • wamp网站根目录配置web制作网站的模板
  • 长沙建站长沙网站长春网站优化体验
  • 盐山县做网站价格深圳优化公司高粱seo较
  • 成品网站怎么新建网页百度售后客服电话24小时
  • 做网站用哪个开发工具好上海网优化seo公司
  • 响应式网站可以做缩放图吗刷移动端seo软件
  • 制作网站的专业公司吗今天今日新闻头条最新消息
  • 网站免费响应建设网络运营师
  • 设计网站公司咨询亿企邦编程培训
  • 建站精灵网站模板网站关键词排名查询工具
  • 做旅游网站的方法昆明百度推广开户费用
  • 做网站公司实习日记seo主要是指优化
  • 监理工程师英文外链seo兼职
  • 网站首页弹窗代码互联网营销师培训多少钱
  • wordpress 文章备份什么是优化师
  • 区网站制作天津百度seo代理
  • 行业门户网站有哪些网站建设情况
  • 做网站后要回源码有何用优化关键词有哪些方法
  • 收录好的博客网站吗网站推广软件哪个好
  • 扬中做网站网站策划方案案例
  • 大连网站建设工作室关键词排名点击软件
  • 毕业设计代做网站机械株洲网页设计
  • wordpress主题vue景德镇seo