当前位置: 首页 > news >正文

厦门网站建设电话南宁网络推广服务商

厦门网站建设电话,南宁网络推广服务商,服装外包加工网,最好用的网站推广经验ViT:视觉 Transformer 网络结构Transformer 编码器MLP 头CNN 和 Transformer 网络结构 Transformer 的优势:注意力机制相当于一个多标签检索系统,位置嵌入能知道每个单词的位置,而且适合并行。 尝试把 Transformer 迁移到视觉领…

ViT:视觉 Transformer

    • 网络结构
    • Transformer 编码器
    • MLP 头
    • CNN 和 Transformer

 


网络结构

Transformer 的优势:注意力机制相当于一个多标签检索系统,位置嵌入能知道每个单词的位置,而且适合并行。

尝试把 Transformer 迁移到视觉领域。

ViT 在 Transformer 基础上:

  • 输入:为了把图像空间序列化,引入了图片切分预处理、patch+位置嵌入
  • 主干:Transformer
  • 输出:MLP头及分类器

图片切分预处理:如输入图片大小为 224x224,将图片分为固定大小的patch(16x16),则每张图像会生成 224 ∗ 224 16 ∗ 16 = 196 个 p a t c h \frac{224 * 224}{16*16}=196个patch 1616224224=196patch ,把这些图像块摆成一行,即输入序列长度为196。


在图片块和 Transformer 之间,还有一个全连接层,对维度进行缩放。


patch+位置嵌入:给每个图像块,添加位置。


数学公式:

  • z 0 = [ x c l a s s ; x p 1 E ; x p 2 E ; ⋯ ; x p N E ] + E p o s , E ∈ R ( P 2 ⋅ C ) × D , E p o s ∈ R ( N + 1 ) × D (1) \begin{gathered} z_0 =[\mathbf{x}_{\mathrm{class}};\mathbf{x}_{p}^{1}\mathbf{E};\mathbf{x}_{p}^{2}\mathbf{E};\cdots;\mathbf{x}_{p}^{N}\mathbf{E}]+\mathbf{E}_{pos}, \mathbf{E}\in\mathbb{R}^{(P^{2}\cdot C)\times D},\mathbf{E}_{pos}\in\mathbb{R}^{(N+1)\times D} \text{(1)} \end{gathered} z0=[xclass;xp1E;xp2E;;xpNE]+Epos,ER(P2C)×D,EposR(N+1)×D(1)

z 0 z_0 z0输入图像进行编码 z 0 z_0 z0表示输入图像的嵌入向量。

x p ( 1 ) \mathbf{x}_{p}^{(1)} xp(1) 表示第一个图像块的嵌入向量, E \mathbf{E} E 是位置嵌入矩阵,用于将图像块的位置信息编码到嵌入向量中。

E pos \mathbf{E}_{\text{pos}} Epos 是位置编码矩阵,用于将位置信息添加到输入数据中。

x c l a s s \mathbf{x}_{\mathrm{class}} xclass向量用于解决图像分类问题,将整个图像的类别信息引入Transformer模型。

Transformer 编码器

计算出 z 0 z_0 z0 后,输入到 Transformer 编码器(没有用解码器):

输入部分:

  • Layer Norm:把 z 0 z_{0} z0 归一化,再 Q、K、V 分离。

  • 残差连接,减轻梯度消失、爆炸。

MSA:多头注意力,每个注意力头负责捕捉图像的不同局部信息,把图像中多个差异拿出来进行学习。

MLP 头

多层感知机(Multilayer Perceptron,MLP)是一种前馈神经网络:

MLP 分类头就是一个全连接层。

TA 的工作流程:

  • 接受编码器的输出
  • 先把 x c l a s s \mathbf{x}_{\mathrm{class}} xclass 提取出来
  • 再分类

ViT编码器的输出将是一个形状为(4, 16, 512)的张量。

  • 第一个维度4表示批次大小,即有4张输入图像。
  • 第二个维度16表示每张图像被分割为16个图像块。
  • 第三个维度512表示每个图像块的表示维度,即隐藏层的维度。

这个编码器输出可以包含输入图像的全局信息和局部信息的组合。

每个图像块的表示捕捉了该图像块的局部特征,而整个编码器输出则综合了所有图像块的信息,包括它们之间的关系,从而提供了更全局的图像信息。

CNN 和 Transformer

CNN擅长处理图像的局部特征,而ViT模型擅长处理图像的全局特征和整体类别信息。

选择CNN模型的情况:

  • 当任务关注图像的局部特征,比如纹理、形状、边缘等。
  • 当处理的图像较大,且局部特征在整体中仍然具有较大的重要性。
  • 当数据集较小,而且已经有了一些经典的CNN模型在类似任务上表现良好。

选择ViT模型的情况:

  • 当任务需要关注图像的全局特征和整体类别信息。
  • 当处理的图像相对较小,且全局结构和上下文信息对于任务很重要。
  • 当数据集较大,可以利用更强大的模型来提取全局信息和学习更复杂的特征。
http://www.mmbaike.com/news/84102.html

相关文章:

  • 微信网站开发怎么做网络安全培训最强的机构
  • dreamweaver怎样用框架做网站关键字广告
  • 网站建设哪个平台好舆情分析报告案例
  • 新农村建设投诉网站快速建站网站
  • 兼容ie8的网站模板如何在百度上做产品推广
  • 网站系统建设支出分录网络营销的方式有哪些
  • 网站主页图片设计怎样申请网站注册
  • 违章搭建关键词排名优化系统
  • 消防有哪些网站合适做企业建站流程
  • 5m带宽做视频网站爱站网备案查询
  • 深圳做物流网站seo 专业
  • 上海营销型网站建设百度推广400客服电话
  • 如今做哪些网站致富最近比较火的关键词
  • 好的做问卷调查的网站好互联网营销策划是做什么的
  • 手机端自定义做链接网站最近三天的新闻热点
  • 网站建设属于广告费吗除了百度指数还有哪些指数
  • 网站开发工期安排网站设计需要什么
  • 天津市建设委员会 网站天津网络推广seo
  • 软件设计开发郑州seo全网营销
  • 东莞企业为什么网站建设重庆百度搜索优化
  • 遵义市网站建设媒体营销
  • 媒体查询做响应式网站太原百度搜索排名优化
  • 软件开发视频网站今日国内新闻摘抄十条
  • seo技能培训网站排名优化工具
  • 广州乐地网站建设公司哪家竞价托管专业
  • 域名先解析后做网站emlog友情链接代码
  • 用wordpress做的外贸网站seo公司广州
  • wordpress 导航链接seo在线推广
  • 大数据网站视频宁波seo哪家好
  • 网站建设方案 报价汕头seo公司