当前位置: 首页 > news >正文

云网站制作的流程百度快照投诉中心人工电话

云网站制作的流程,百度快照投诉中心人工电话,wordpress前台不显示图片,关于销售网站建设的短文上一篇:4 Tensorflow图像识别模型——数据预处理-CSDN博客 1、数据集标签 上一篇介绍了图像识别的数据预处理,下面是完整的代码: import os import tensorflow as tf# 获取训练集和验证集目录 train_dir os.path.join(cats_and_dogs_filter…

上一篇:4 Tensorflow图像识别模型——数据预处理-CSDN博客

1、数据集标签

上一篇介绍了图像识别的数据预处理,下面是完整的代码:

import os
import tensorflow as tf# 获取训练集和验证集目录
train_dir = os.path.join('cats_and_dogs_filtered/train')
validation_dir = os.path.join('cats_and_dogs_filtered/validation')# 模型参数设置
BATCH_SIZE = 100# 图片尺寸统一为150*150
IMG_SHAPE = 150# 处理图像尺寸
img_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, horizontal_flip=True, )train_data_gen = img_generator.flow_from_directory(directory=train_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')
val_data_gen = img_generator.flow_from_directory(directory=validation_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')

上一篇提到系统的输入是“特征-标签”对,特征是输入的图片,标签就是标记该图片是猫还是狗。上面的代码如何知道输入的照片是猫还是狗?

这里用到了keras的一个函数flow_from_directory(),从目录中生成数据流,子目录会自动帮你生成标签。先看看train训练集的这两个子目录生成的标签是什么:

使用下面代码查看

print(train_data_gen.class_indices)

运行结果:

Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
{'cats': 0, 'dogs': 1}

从运行结果可以看到,猫的照片系统自动打上了0的标签,狗的标签是1。

2、Relu激活函数

构建模型的完整代码如下:

import os
import tensorflow as tf
import numpy as np# 获取训练集和验证集目录
train_dir = os.path.join('cats_and_dogs_filtered/train')
validation_dir = os.path.join('cats_and_dogs_filtered/validation')# 模型参数设置
BATCH_SIZE = 100# 图片尺寸统一为150*150
IMG_SHAPE = 150# 处理图像尺寸
img_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, horizontal_flip=True, )# 训练数据
train_data_gen = img_generator.flow_from_directory(directory=train_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')# 验证数据
val_data_gen = img_generator.flow_from_directory(directory=validation_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')model = tf.keras.Sequential([tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(100, (3, 3), activation='relu'),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Flatten(),tf.keras.layers.Dense(512, activation='relu'),tf.keras.layers.Dense(2)])model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])EPOCHS = 20
history = model.fit_generator(train_data_gen,steps_per_epoch=int(np.ceil(2000 / float(BATCH_SIZE))),epochs=EPOCHS,validation_data=val_data_gen,validation_steps=int(np.ceil(1000 / float(BATCH_SIZE)))
)

model中加入了和之前不一样的代码:

tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),

这里使用了卷积神经,主要是为了突出区分不同对象的特征。一张图片的信息很多的,但往往我们只需要一些特征进行训练就可以了,后续会详细介绍。

现在先介绍 activation='relu',激活函数Relu。

ReLU,全称是线性整流函数(Rectified Linear Unit),是人工神经网络中常用的激活函数。它的图像如下:

当x<=0时,f(x)=0;

当x>0时,f(x)=x;

可以运行代码看看:

例1:

import tensorflow as tfx = -19
print(tf.nn.relu(x))

运行结果:
tf.Tensor(0, shape=(), dtype=int32)

输入-19,使用relu激活函数后的结果为0

例2:

import tensorflow as tfx = 8
print(tf.nn.relu(x))

运行结果:

tf.Tensor(8, shape=(), dtype=int32)

3、损失函数

代码:


model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy']
              )
 

其中损失函数为SparseCategoricalCrossentropy,它是用于计算多分类问题的交叉熵,如果是两个或两个以上的分类问题可以始终这样设置。对其原理及计算过程的读者可以自行百度,此处不详细介绍。

4、训练过程详解
(1)训练准确率

运行上面的完整代码:

可以看到训练集和验证集的loss值在慢慢下降,准确率在提升。

划线部分是最后一个epoch的训练结果:

accuracy:0.8175,也就是说你的神经网络在分类训练数据方面的准确率约为82%;

val_accuracy:0.7160,在验证集的准确率约为72%

(2)batch_size批次大小

代码中batche_size设置的大小为100,意思是每批次生成的样本数量为100。

例如上述代码的train训练集一共有2000张图片,一个周期(epoch)分20个批次(2000/100=20)样本数据进行训练,每个批次训练完后利用优化器更新模型参数。

所以一个周期(epoch)的模型参数更新次数就是20:2000/batch_size=20

截图中红色部分,就是一个epoch分了20个批次用来更新模型参数。

训练结果会因为模型的参数的设置、训练集图片的数量等等原因结果大不相同,学习的时候可以自己动手去调整模型参数来看看训练结果。



 

http://www.mmbaike.com/news/88804.html

相关文章:

  • 网站虚拟主机租用百度关键词权重查询
  • 驾校报名网站怎么做seo优化在哪里学
  • 网站建设服务费税点全网络品牌推广
  • wordpress网站logo没显示互联网营销推广公司
  • 一条龙网站建设哪家专业怎么查看网站的友情链接
  • 鄱阳做网站seo优化一般包括
  • 要怎么做网站排名前十的大学
  • wordpress获取帖子标签辽源seo
  • 淘宝运营跟做网站哪种工资高重庆seo网站推广费用
  • 青岛抖音seo百度seo快速见效方法
  • 广东哪家网站建设后台管理便捷网站出售
  • 做外贸网站赚钱吗搜索大全引擎入口
  • 网站制作工作室24小时接单打开百度搜索引擎
  • 暴雪战网官方网站入口媒体营销平台
  • 哪有免费的网站建设模板百度广告联盟下载
  • 网站数据库有哪些一句话让客户主动找你
  • 网站源码破解版网络营销课程
  • 江西做网站哪家好凡科网
  • 做网站需要相机吗怎么推广网页
  • 武汉建委官网首页上海不限关键词优化
  • 长沙长沙建设网站网站优化推广价格
  • 物流网站给做软件前端seo是什么意思
  • 武汉电商网站开发百度商城官网首页
  • 建设网站需要的工具营销策划推广公司
  • 泰安人才网福州seo优化
  • 网站推广应该注意什么2022年最新十条新闻
  • 用服务器做网站需要购买域名吗口碑营销的模式
  • 广州外贸网站信息sem工作内容
  • 手机网站制作平台有哪些郑州网络推广公司
  • 制作公司网站怎样收费win10优化大师怎么样