当前位置: 首页 > news >正文

地方房地产网站seo实战案例分享windows系统优化软件

地方房地产网站seo实战案例分享,windows系统优化软件,discuz网站搬家,wap视频网站建设难吗文章目录 概念n维向量向量类型实向量和复向量行向量和列向量行列向量的转换特殊向量向量运算 矩阵的向量分块👺 解析几何向量和线性代数向量👺向量空间 n n n维向量空间 n n n维空间的 n − 1 n-1 n−1维超平面 概念 n维向量 由 n n n个有次序的数 a …

文章目录

概念

n维向量

  • n n n个有次序的数 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,,an组成的有序数组称为n维向量,简称向量
    • a i a_i ai称为向量的第 i i i分量

向量类型

实向量和复向量

  • 分量全为实数的向量称为实向量,分量是复数的向量称为复向量(实向量是从属于复向量的)
    • 这里默认讨论的是实向量

行向量和列向量

  • n n n维向量可以写成一行一列,分别称为行向量,列向量(或分别称为行矩阵,列矩阵)

    • 一个 n n n维行向量是 1 × n 1\times{n} 1×n的矩阵

      • ( a 1 a 2 ⋮ a n ) \begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix} a1a2an
    • 一个 n n n维列向量是 n × 1 n\times{1} n×1的矩阵

      • ( a 1 a 2 ⋯ a n ) \begin{pmatrix}a_1&a_2&\cdots&a_n\end{pmatrix} (a1a2an)
  • 通常以小写希腊字母,例如: α , β , γ , ⋯ \boldsymbol{\alpha,\beta,\gamma,\cdots} α,β,γ,表示向量

  • 也可以用小写的粗体的英文字母表示,例如: a , b , ⋯ \boldsymbol{a,b,\cdots} a,b,,或粗正体 a , b , ⋯ \bold{a,b,\cdots} a,b,

  • 有时为例书写方便,可以用非粗体: α , β , γ , ⋯ {\alpha,\beta,\gamma,\cdots} α,β,γ,

  • 在按行分块和按列分块的分块矩阵中,还可能出现用大写英文字母表示列分块或行分块,例如 A 1 , A 2 , ⋯ A_1,A_2,\cdots A1,A2,

行列向量的转换

  • 列向量可以看作行向量的转置

  • 习惯上,向量通常默认指列向量,设向量包含 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,,an元素

    • 列向量和行向量分别表示为

    • a = ( a 1 a 2 ⋮ a n ) = ( a 1 a 2 ⋯ a n ) T a T = ( a 1 a 2 ⋯ a n ) = ( a 1 , a 2 , ⋯ , a n ) \bold{a}=\begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix} =\begin{pmatrix}a_1&a_2&\cdots&a_n\end{pmatrix}^T \\ \bold{a}^T=\begin{pmatrix}a_1&a_2&\cdots&a_n\end{pmatrix}=(a_1,a_2,\cdots,a_n) a= a1a2an =(a1a2an)TaT=(a1a2an)=(a1,a2,,an)

    • 为了便于区分符号(文字)所表示的向量是列向量还是行向量,习惯上表示行向量的符号带上一个 T ^T T上标,例如 a T \bold{a}^T aT表示列向量 a \bold{a} a的转置得到的

    • 简化书写,由于列向量如果严格竖着写比较占用空间,紧凑性不好,我们可以利用转置性质: a = ( a T ) T \bold{a}=(\bold{a}^T)^T a=(aT)T,将列向量用行向量的转置形式书写展开式,这样行列向量也可以用横着写

特殊向量

  • 分量全为0的向量称为零向量
  • 零向量第 i i i个分量改为1得到的向量是 a i = 1 a_i=1 ai=1 n n n基向量

向量运算

  • 向量作为一种特殊的矩阵,仍然按照矩阵的运算规则运算

  • k a = k ( a 1 , a 2 , ⋯ , a n ) = ( k a 1 , k a 2 , ⋯ , k a n ) k\bold{a}=k(a_1,a_2,\cdots,a_n)=(ka_1,ka_2,\cdots,ka_n) ka=k(a1,a2,,an)=(ka1,ka2,,kan)

    • − a = − ( a 1 , a 2 , ⋯ , a n ) = ( − a 1 , − a 2 , ⋯ , − a n ) -\bold{a}=-(a_1,a_2,\cdots,a_n)=(-a_1,-a_2,\cdots,-a_n) a=(a1,a2,,an)=(a1,a2,,an)为向量 − a -\bold{a} a负向量

矩阵的向量分块👺

  • A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\begin{pmatrix} a_{11} &a_{12} &\cdots &a_{1n} \\ a_{21} &a_{22} &\cdots &a_{2n} \\ \vdots &\vdots & &\vdots \\ a_{m1} &a_{m2} &\cdots &a_{mn} \\ \end{pmatrix} A= a11a21am1a12a22am2a1na2namn

  • 记 α j = ( a 1 j a 2 j ⋮ a m j ) , j = 1 , 2 , ⋯ , n A = ( α 1 α 2 ⋯ α n ) \\记\alpha_j =\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \\ \end{pmatrix},j=1,2,\cdots,n \\A=\begin{pmatrix} \alpha_{1}&\alpha_{2}&\cdots&\alpha_{n} \\ \end{pmatrix} αj= a1ja2jamj ,j=1,2,,nA=(α1α2αn)

  • 记 β i T = ( a i 1 , a i 2 , ⋯ , a i n ) , i = 1 , 2 , ⋯ , m A = ( β 1 T β 2 T ⋮ β m T ) 记\beta_i^T=(a_{i1},a_{i2},\cdots,a_{in}),i=1,2,\cdots,m \\ A= \begin{pmatrix} \beta_{1}^T\\ \beta_{2}^T\\ \vdots \\ \beta_{m}^T \\ \end{pmatrix} βiT=(ai1,ai2,,ain),i=1,2,,mA= β1Tβ2TβmT

  • A = ( α 1 α 2 ⋯ α n ) = ( β 1 T β 2 T ⋮ β m T ) A=\begin{pmatrix} \alpha_{1}&\alpha_{2}&\cdots&\alpha_{n} \\ \end{pmatrix} =\begin{pmatrix} \beta_{1}^T\\ \beta_{2}^T\\ \vdots \\ \beta_{m}^T \\ \end{pmatrix} A=(α1α2αn)= β1Tβ2TβmT

解析几何向量和线性代数向量👺

  • 在解析几何中,我们把"既有大小又有方向的"叫做向量
    • 把可随意平移的有向线段作为向量的几何形象
    • 引进坐标系后,这种向量就有了坐标表示: n n n个有次序的实数数组 ( a 1 , ⋯ , a n ) (a_1,\cdots,a_n) (a1,,an)
      • n = 1 n=1 n=1对应的是标量
      • n = 2 n=2 n=2对应于二维平面向量
      • n = 3 n=3 n=3对应于三维空间向量
    • n ⩽ 3 n\leqslant{3} n3时, n n n维向量可以把有向线段作为几何形象
    • n > 3 n>3 n>3时, n n n维向量不再有几何形象,但是沿用一些几何术语

向量空间

  • 几何中,"空间"通常是作为点的集合,构成空间的元素是点,这样的空间叫做点空间
    • 我们把 3 3 3维向量的全体所组成的集合: R 3 \mathbb{R}^3 R3={ r = ( x , y , z ) T ∣ x , y , z ∈ R \bold{r}=(x,y,z)^T|x,y,z\in\mathbb{R} r=(x,y,z)Tx,y,zR}称为3维向量空间
    • 在点空间取定坐标系后,三维空间中的 P ( x , y , z ) P(x,y,z) P(x,y,z) 3 3 3向量 r = ( x , y , z ) T \bold{r}=(x,y,z)^T r=(x,y,z)T之间有一 一对应关系
  • 因此向量空间可以类比为"取定了坐标系"的点空间
    • 在讨论向量的运算时,我们把向量看作有向线段
    • 在讨论向量集时,把向量 r \bold{r} r看作时 r \bold{r} r径向的点 P P P,从而把点 P P P的轨迹作为向量集作为向量集的图形
      • 例如 Π = { P ( x , y , z ) ∣ a x + b y + c z + d = 0 } \Pi=\{P(x,y,z)|ax+by+cz+d=0\} Π={P(x,y,z)ax+by+cz+d=0},结合空间解析几何的知识,是一个平面方程的一般式,因此 Π \Pi Π是一个平面 ( a 2 + b 2 + c 2 > 0 ) (a^2+b^2+c^2>{0}) (a2+b2+c2>0) ( a , b , c ) ≠ ( 0 , 0 , 0 ) (a,b,c)\neq{(0,0,0)} (a,b,c)=(0,0,0)
      • 由此,向量集 S = { r = ( x , y , z ) T ∣ a x + b y + c z + d = 0 } S=\{\bold{r}=(x,y,z)^T|ax+by+cz+d=0\} S={r=(x,y,z)Tax+by+cz+d=0}也叫做向量空间 R 3 \mathbb{R}^3 R3中的平面(3维空间中的2维平面),并把 Π \Pi Π作为向量集S的图形
        • x , y , z x,y,z x,y,z替换为 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3; x , y , z x,y,z x,y,z替换为 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3,则平面方程作 ( ∑ i = 1 3 a i x i ) + b = 0 (\sum_{i=1}^{3}a_ix_i)+b=0 (i=13aixi)+b=0

n n n维向量空间

  • 设集合 D = { 1 , 2 , ⋯ , n } D=\{1,2,\cdots,n\} D={1,2,,n}
  • n n n维向量的全体构成的集合 R 3 \mathbb{R}^3 R3={ x = ( x 1 , x 2 , ⋯ , x n ) T ∣ ∀ i ∈ D , x i ∈ R \bold{x}=(x_1,x_2,\cdots,x_n)^T|\forall{i}\in{D},x_i\in\mathbb{R} x=(x1,x2,,xn)T∣∀iD,xiR}叫做 n n n向量空间

n n n维空间的 n − 1 n-1 n1维超平面

  • n n n维向量的集合{ x = ( x 1 , x 2 , ⋯ , x n ) T ∣ ( ∑ i = 1 n a i x i ) + b = 0 \bold{x}=(x_1,x_2,\cdots,x_n)^T|(\sum_{i=1}^{n}a_ix_i)+b=0 x=(x1,x2,,xn)T(i=1naixi)+b=0}叫做 n n n维向量空间 R n \mathbb{R}^n Rn中的 n − 1 n-1 n1超平面
http://www.mmbaike.com/news/31597.html

相关文章:

  • 专业网站建设团队营销管理系统
  • 网站开发一般用哪个浏览器爱站网工具
  • 安平县哪家做网站关联词有哪些 全部
  • cdr可不可做网站网站搭建
  • 网站模块有哪些seo网站关键词排名提升
  • 做网站天通苑爱站网工具
  • 制作网站的素材国际时事新闻2022最新
  • 做网站小编怎么样酒店网络营销方式有哪些
  • 网站建设的市场优化公司
  • 网站设计原则的历史免费b站动漫推广网站2023
  • 公司网站如何做百度收录合肥正规的seo公司
  • 做私彩网站需注意什么龙泉驿网站seo
  • 天津做胎儿鉴定网站公司业务推广
  • 黑客做网站seo外包
  • 国外做btc的网站赣州seo公司
  • 网站怎么维护更新76人vs猛龙
  • 西宁做网站制作的公司google秒收录方法
  • 如何在自己的网站上做h5页面网站怎么添加外链
  • 信誉好的徐州网站建设找个免费网站这么难吗
  • 阜新市建设学校管方网站推广策划方案
  • 石家庄新闻广播在线收听网站seo优化方法
  • 哪个网站做logo赚钱seo软件资源
  • wordpress dux5.2主题企业网站推广优化
  • 提卡的网站怎么做学习软件的网站
  • dw怎么做网站相册seo外链工具
  • 做优化的网站电话简单的网页设计
  • 燕郊做网站找谁关键词林俊杰歌词
  • 海洋承德网站建设公司广告发布平台app
  • 北京网站建设在线接app推广接单平台
  • 中英文外贸网站模板企业营销管理